The Choice Of Sheathing For Mineral Insulated Thermocouples H.L. Daneman, P.E.

INTRODUCTION

The mineral-insulated integrally metalsheathed (MIMS) form of thermocouple consists of matched thermocouple wires surrounded by insulating material (typically MgO) compacted by rolling, drawing or swaging until the sheath is reduced in diameter. The advantages of MIMS thermocouples are:

- Chemical isolation of wires from the surrounding atmosphere.
- Shielding of thermoelements from sources of electrical interference.
- Protection of the wires and insulation from domage due to ob
- insulation from damage due to shock.Flexibility of the final assembly allowing bending.

For two decades, people have credited MIMS construction with a greater capability than deserved. Quite frequently, this form has shown less stability, less durability and lower temperature limits than corresponding unsheathed elements. The nickel bearing MIMS thermocouples used above 400 °C (750 °F) are especially vulnerable to calibration instability and shortened lifetime - factors which bear heavily on thermocouple use and selection.

HYSTERESIS

Thermoelectric hysteresis is one contributor toward calibration instability. Hysteresis is a form of short-range order/disorder phenomenon occurring between 200 and 600 °C (peaking at ~ 400 °C) for Ni-Cr alloys such as Type K. It is evidenced by a calibration change of several degrees as the thermocouple temperature is cycled within this temperature band. Type N thermocouples exhibit hysteresis of up to 5°C when heated and cooled between 200 and 1000 °C (peaking around 750 °C). At 900 °C hysteresis is 2 to 3 °C. If the type K thermocouple, for example, will be used below 500 °C, hysteresis can be reduced by annealing overnight at 450 °C.

OXIDATION

Another phenomenon affecting calibration is oxidation. Ni-Cr-Al alloys (<u>e.g.</u>, Chromel*) have limited life in air above 500 °C because of oxidation. A special form of oxidation is so-called "green rot" which is preferential oxidation of Cr in atmospheres with low oxygen content (<u>e.g.</u>, sheaths in which the volume of air is limited and stagnant). Nicrosil resists oxidation up to about 1,250 °C (2,300 °F) and does not exhibit green rot.

Several new sheath materials called "Nicrobell" (**) consist of Nicrosil with 1.5% or 3.0% niobium. Nicrobell "A" is particularly formulated to be resistant to oxidation. Another new oxidation resistant sheath material called Nicrosil + (***) consists of Nicrosil plus 0.15% magnesium. It is reported (ref. 4) to exhibit less spalling and probably have a longer life than some Nicrobell version(s) tested.

Nicrosil, itself, does not have satisfactory resistance to reducing atmospheres, such as encountered in most combustion or many heat treating processes. Other adaptations of Nicrosil for use as sheath material (such as Nicrobells B, C and D) can be expected to deal with typical nonoxidizing atmospheres.

CONTAMINATION

A third influence on calibration stability is contamination. The idea behind the mineral-insulated, integrally designed, metal-sheathed thermocouple is that the uniform compression of finely divided mineral oxides (typically MgÓ) insulation surrounding the wires and filling the sheath would seal the internal volume, thereby eliminating contamination. The volume of the insulation compressed by swaging, rolling or drawing is on the order of 85% of solid material. This is useful, permitting the tubing to be bent and also permitting the manufacture of smaller diameter assemblies. It does, however, permit the intrusion of gas such as water vapor or air. It also permits vapor diffusion of elements composing the wires or sheath. Bentley and Morgan determined that the vapor-phase diffusion of Mn (manganese) through the MgO insulation has the greatest influence on thermocouple decalibration.

METAL FATIGUE

Metal fatigue is another cause of shortened thermocouple life. Differing temperature coefficients of linear expansion between sheaths and wires causes strain during heating or cooling. These strains result in eventual fracture due to metal fatigue. On heating to 900°C, the thermal expansion of Nisil differs from SS 304 by 0.4% of length. Nicrosil has only 0.05% difference in thermal expansion compared to Nisil (the leg most likely to fracture). A sheath of Nicrosil, Nicrosil ⁺ or Niobell would therefore induce less metal fatigue in either leg of the Type N thermocouple than would stainless steel.

COMPOSITION

Composition changes in SS sheathed couples are generally greater than in Inconel (****) sheathed couples. In tests performed by Anderson, *et al.*, the KN leg showed an increase in chromium but a decrease in aluminum. These changes in composition contributed the major portion of the resulting change in calibration of the thermocouple.

Most stainless steels have from 1 to 2% of manganese. Type 304 has $\approx 2\%$ manganese. Others have manganese concentrations varying from 1% to 10%. Inconel has up to 1% Mn. As a rule of thumb, each 1% of Mn in the sheath material contributes -10 °C calibration shift for 1,000 hours at 1,100 °C. According to Bentley, at 1,200 °C, Type N in a 3 mm diameter SS sheath drifted -24 °C in 1,000 hours.

HUMIDITY

There is a multiple effect of water vapor within the sheath. It is rapidly absorbed in the MgO, reducing the insulation resistance. Humidity intrusion can ruin a MIMS thermocouple assembly in as short a time as a few minutes. In lesser amounts, it destroys a protective oxide coating on Nickel-Chromium alloys, subjecting them to more rapid deterioration. The changes due to water

Figure 1. Drift of 3 mm diameter stainless steel sheathed and Inconel 600 sheathed type K and Nicrosil vs. Nisil thermocouples in 1200°C in vacuum. The dips in the drift curve are the result of the "in-place inhomogeneity test" where the samples were extracted from the furnace by 5 cm.

Figure 2. The insitu drift in type N thermocouples with tips held at 1100°C. Curves refer to mineral insulated metal sheathed thermocouples with 3mm OD sheaths of 310 stainless steel (SS) or Nicrosil (NCR) and 1.6mm bare wire thermocouples in air. The range in drift for the latter is also indicated.

vapor can be sufficiently severe as to make affected couples useless by reducing insulation resistance. This reduced resistance can result in misleading temperature readings, premature failure or even erroneous readings after open circuiting.

Water vapor can be introduced during thermocouple fabrication or repair, or even by changes in atmospheric pressure during air shipment or during long periods of storage (<u>e.g.</u>, six months) at construction sites. Care must be taken of hermetic seals during shipment and installation.

RECOMMENDATIONS

Although not mentioned above , there is some relationship between the diameter of these thermocouple materials and stability and longevity at elevated temperatures. The surface of the brickwork on which electrical heaters are supported becomes conductive at elevated temperatures. This leads to flow of electrical currents through thermocouple sheaths to ground, perhaps through the measuring instrument.

The temptation to use the finest sheathed thermocouples (as fine as 1 mm) should be resisted for higher temperature or corrosive industrial environments.

Stainless steel is a poorer sheath for mineral-insulated, metal-sheathed thermocouples than either Inconel 600 or modified Nicrosil when used with Ni-Cr thermocouples such as Type K or Type N. The modified Nicrosil sheathed thermocouples offer improved oxidation resistance up to 1,100 °C (1,200 to 1,250 °C for Type N), reduced failures due to differential thermal expansion, improved ductility and the elimination of the drift

problems caused by the vapor diffusion of manganese from stainless steels or Inconel.

Considering the current state of supply of the newer materials, one could well choose a low manganese (0.3% or less) Inconel sheathed Type K MIMS thermocouple until such time as modified Nicrosil sheathed Type K or N and appropriate supporting data become readily available.

- CHROMEL is a trademark of the Hoskins Manufacturing Co. NICROBELL is a trademark of NICROBELL Pty. Ltd. NICROBELL sheath alloys are patented in a number of countries including the USA
- (***) NICROSIL + is a trademark of Pyrotenax Australia Pty. Ltd.
- *) INCONEL is a trademark of the International Nickel Co.

Reproduced with the permission of: H.L. Daneman P.O. Box 31056 Sante Fe. NM 87594

REFERENCES

- 1. Anderson, R. L., Ludwig, R.L., FAILURE OF SHEATHED THERMOCOUPLES DUE TO THERMAL CYCLING, Temperature, (1982) pp 939-951
- 2. Anderson, R. L., Lyons, J. D., Kollie, T G., Christie, W. H., Eby, R., DECALIBRATION OF SHEATHED THERMOCOUPLES, Temperature, (1982) pp 977-1007
- 3. Bentley, R. E., NEW-GENERATION TEMPERATURE PROBES, Materials
- Australasia, April (1987), pp. 10-13 4. Bentley, R. E., THEORY AND PRACTICE OF THERMOELECTRIC THERMOMETERY, 2nd Edition, CSIRO Div. of Applied Physics, (1990) 152 pages.

- 5. Bentley, R.E., private communication, 11/22/90
- 6. Burley, N. A., HIGHLY STABLE NICKEL-BASE ALLOYS FOR THERMOCOUPLES, J. of the Australian Institute of Metals, May
- (1972), pp 101-113 7. Burley, N. A., Burns, G. W., Powell, R. L., NICROSIL AND NISIL: THEIR DEVELOPMENT AND STANDARDIZATION, Inst. Physical Conf. Ser. No. 26, (1975), pp 162-171
- Burley, N. A., Jones, T.P., PRACTICAL PERFORMANCE OF NICROSIL-NISIL THERMOCOUPLES, NICROSIL-NISIL THERMOCOUPLES, Inst. Physical Conf. Ser. No. 26, (1975),
- pp 172-180 Burley, N. A., Powell, R. L., Burns, G. W., Scroger, M. G., THE NICROSIL 9. VS NISIL THERMOCOUPLE: PROPERTIES AND THERMOELECTRIC DATA, NBS
- Monograph 161, April (1978), pp 1-156 10.Burley, N. A., THE NICROSIL VS NISIL THERMOCOUPLE: THE FIRST
- TWO DECADES, (1986) private communication
- 11. Burley, N. A., N-CLAD-N: A NOVEL ADVANCED TYPE N INTEGRALLY-SHEATHED THERMOCOUPLE OF ULTRA-HIGH THERMOELECTRIC STABILITY, High Temperatures-High Pressures, (1986) pp 609-616
- 12. Burley, N. A., NICROSIL/NISIL TYPE N
- 12.Burley, N. A., NICROSIDINISIE THE T THERMOCOUPLE, Measurements & Control, April (1989), pp 130-133 13.Burley, N. A., ADVANCED INTEGRALLY SHEATHED TYPE N THERMOCOUPLE OF ULTRA-HIGH THERMOELECTRIC STABILITY, Measurement, Jan-Mar 1990, pp 36-41
- 14. Daneman, H. L., THERMOCOUPLES, Measurements & Control, June (1988),
- pp 242-243 15.Frank, D.E., AS TEMPERATURES INCREASE, SO DO THE PROBLEMS!, Measurements &
- Control, June (1988), p 245 16.Hobson, J. W., THE INTRODUCTION OF THE NICROSIL/NISIL THERMOCOUPLES IN AUSTRALIA. Australian Journal of Instrumentation and Control, October (1982), pp 102-104
- 17. Hobson, J. W., THE K TO N TRANSITION BUILDING ON SUCCESS, Australian Journal of Instrumentation and Control, (1985) pp 12-15
- 18. Northover, E. W., Hitchcock, J. A., A NEW HIGH-STABILITY NICKEL ALLOY, Instrument Practice,
- ALLOT, INSTRUMENT Fractice, September (1971), pp 529-531 19.Paine, A., TYPE N AND K MIMS T/C'S, fax LNA5195, 11/23/90 20.Wang, T P., Starr, C. D., NICROSIL-NISIL THERMOCOUPLES IN PRODUCTION EUROACES ISA PRODUCTION FURNACES, ISA (1978) Annual conference, pp 235-254
- 21.Wang, T. P., Starr, C. D., EMF STABILITY OF NICROSIL-NISIL AT 500°C, ISA (1978) Annual conference, pp 221-233

Material Selection Guide

This chart is a guide to selection of thermocouple sheath and thermowell materials according to process fluid. It includes factors such as catalytic reaction, contamination and electrolysis. However, there are many instances where factors other than these must be considered. It is recommended that such special applications be submitted to OMEGA ENGINEERING for recommendations.

These recommendations are only guides based on the most economical material selection. OMEGA ENGINEERING cannot be held responsible if these recommendations are not satisfactory for specific applications.

SUBSTANCE	CONDITIONS	RECOMMENDED METAL	SUBSTANCE	CONDITIONS	RECOMMENDED METAL	SUBSTANCE	CONDITIONS	Recommended Metal
Acetate Solvents	Crude or Pure	Monel or Nickel	Ethyl Acetate		Monel	Picric Acid	70°F	304 Stainless Steel
Acetic Acid	10% - 70°F	304 Stainless Steel	Ethyl Chloride	70°F	304 Stainless Steel	Potassium Bromide	70°F	316 Stainless Steel
	50% - 70°F	304 Stainless Steel	Ethylene Glycol		Steel (C1018)	Potassium Carbonate	1% - 70°F	304 Stainless Steel
	50% - 212°F	316 Stainless Steel	Ethyl Sulphate	70°F	Monel	Potassium Chlorate	70°F	304 Stainless Steel
	99% - 70°F	430 Stainless Steel	Ferric Chloride	1% - 70°F	316 Stainless Steel	Potassium Chloride	5% - 70°*F	304 Stainless Steel
	99% - 212°F	430 Stainless Steel		5% - 70°F	Tantalum		5% - 212°F	304 Stainless Steel
Acetic Anhydride		Monel		5% - Boiling	Tantalum	Potassium Hydroxide	5% - 70°F	304 Stainless Steel
Acetone	212°F	304 Stainless Steel	Ferric Sulphate	5% - 70°F	304 Stainless Steel		25% - 212°F	304 Stainless Steel
Acetylene		304, Monel, Nickel	Ferrous Sulphate	Dilute 70°F	304 Stainless Steel		50% - 212°F	316 Stainless Steel
Alconol Ethyl	/0°F	304 Stainless Steel	Formaldenyde		304 Stainless Steel	Potassium Nitrate	5% - 70°F	304 Stainless Steel
Alcohol Mothul	2121	304 Stainless Steel	Freon Formio Acid	E0/ 70°F	Steel (C1018)	Dotoccium	5% - 212°F	304 Stainless Steel
	/U F 212°E	204 Stainless Steel		3% - 70 F 5% 150°E	216 Stainless Steel	PoldSSiuIII	F9/ 70°E	204 Stainlass Staal
Aluminum	Molton	Cast iron	Callic Acid	5% 70°F	Monel	Potassium Sulphata	5% 70°F	204 Stainless Steel
Aluminum Acetate	Saturated	304 Stainless Steel		5% - 150°F	Monel		5% - 212°F	304 Stainless Steel
Aluminum Sulnhate	10% - 70°F	304 Stainless Steel	Gasoline	70°F	304 Stainless Steel	Potassium Sulphide	70°F	304 Stainless Steel
	Saturated 70°F	304 Stainless Steel	Glucose	70°F	304 Stainless Steel	Propane		304 Stainless Steel
	10% - 212°F	316 Stainless Steel	Glycerine	70°F	304 Stainless Steel	Pyrogallic Acid		304 Stainless Steel
	Saturated 212°F	316 Stainless Steel	Glycerol		304 Stainless Steel	Quinine Bisulphate	Dry	316 Stainless Steel
Ammonia	All concentrations 70°F	304 Stainless Steel	Heat Treating		446 Stainless Steel	Quinine Sulphate	Dry	304 Stainless Steel
Ammonium Chloride	All concentrations 212°F	316 Stainless Steel	Hydrobromic Acid	48% - 212°F	Hastelloy B	Resin		304 Stainless Steel
Ammonium Nitrate	All concentrations 70°F	304 Stainless Steel	Hydrochloric Acid	1% - 70°F	Hastelloy C	Rosin	Molten	304 Stainless Steel
	All concentrations 212°F	304 Stainless Steel		1% - 212°F	Hastelloy B	Sea Water		Monel
Ammonium Sulphate	5% - 70°F	304 Stainless Steel		5% - 70°F	Hastelloy C	Salommoniac		Monel
	10% - 212°F	316 Stainless Steel		5% - 212°F	Hastelloy B	Salicylic Acid		NICKEI
Anilling	Saluraled 212 F	310 Stainless Steel		25% - 70 F	Hastelloy B	Shellac	70%	304 Stainless Steel
Amulacotato	All concentrations 70 F	304 Stainless Steel	Hudrocyanic Acid	25% - 212 F	Hastelloy B 216 Staiplace Stool	Sudu Sodium Picarbonato	/U F All concontrations 70°E	304 Stainless Steel
Arryaceidie		Stool (C1018)	Hydrofluoric Acid		Hastellov C		5% 150°E	204 Stainless Steel
Aspilati		Phosphor Bronze	Hydrogen Perovide	70°F	316 Stainless Steel	Sodium Risulphate	J70 - 1JU F	Monel
		Monel Nickel		212°F	316 Stainless Steel	Sodium Carbonate	5% - 70°F	304 Stainless Steel
Barium Carbonate	70°F	304 Stainless Steel	Hydrogen Sulphide	Wet and dry	316 Stainless Steel		5% - 150°F	304 Stainless Steel
Barium Chloride	5% - 70°F	Monel	lodine	70°F	Tantalum	Sodium Chloride	5% - 70°F	316 Stainless Steel
	Saturated 70°F	Monel	Kerosene	70°F	304 Stainless Steel		5% - 150°F	316 Stainless Steel
	Aqueous - Hot	316 Stainless Steel	Lactic Acid	5% - 70°F	304 Stainless Steel		Saturated - 70°F	316 Stainless Steel
Barium Hydroxide	1	Steel (C1018)		5% - 150°F	316 Stainless Steel		Saturated - 212°F	316 Stainless Steel
Barium Sulphite		Nichrome		10% - 212°F	Tantalum	Sodium Fluoride	5% - 70°F	Monel
Benzaldehyde		Steel (C1018)	Lacquer	70°F	316 Stainless Steel	Sodium Hydroxide		304 Stainless Steel
Benzene	70°F	304 Stainless Steel	Latex		Steel (C1018)	Sodium Hypochlorite	5% still	316 Stainless Steel
Benzine		Steel (C1018),	Lime Sulphur		Steel (C1018), 304,	Sodium Nitrate	Fused	317 Stainless Steel
Devent	11-4	Monel, Inconel	Line of O'l	7005	Monel	Sodium Peroxide		304 Stainless Steel
Benzol Beracio Acid	HOI F% Llot or Cold	304 Stainless Steel	LINSEED UII Magnasium Chlorida	/U ⁻ F	304 Stainless Steel	Sodium Phosphate		Steel (C1018)
Boracic Acid	5% HOL OF COID	304 Stainless Steel	wagnesium chioride	5% - /UF	Nickel	Sodium Sulphoto	70°F	Steer (CTUT8)
Butadiana	/U F	Rease 304	Magnosium Sulphato	D70 - ZIZ F Cold and Hot	Monel	Sodium Sulphide	70 F 70°F	304 Stainless Steel
Butane	70°F	20/1 Stainless Steel	Malic Acid	Cold and Hot	316 Stainless Steel	Sodium Sulphite	150°F	304 Stainless Steel
Butylacetate	701	Monel	Mercury	Colu anu not	Steel (C1018) 30/	Steam	150 1	304 Stainless Steel
Butyl Alcohol		Copper	wiciculy		Monel	Stearic Acid		304 Stainless Steel
Butylenes		Steel (C1018).	Methane	70°F	Steel (1020)	Sulphur Dioxide	Moist Gas - 70°F	316 Stainless Steel
		Phosphor Bronze	Milk		304, Nickel		Gas - 575°F	304 Stainless Steel
Butyric Acid	5% - 70°F	304 Stainless Steel	Mixed Acids		Carpenter #20	Sulphur	Dry - Molten	304 Stainless Steel
- 10 u	5% - 150°F	304 Stainless Steel	(Sulphuric and Nitri	C			Wet	316 Stainless Steel
Calcium Bisulfite	70°F	316 Stainless Steel	- all temp. and %)			Sulphuric Acid	5% - 70°F	Carp. 20, Hastelloy B
Calcium Chlorate	Dilute 70°F	304 Stainless Steel	Molasses		Steel (C1018), 304,		5% - 212°F	Carp. 20, Hastelloy B
O de la la constata de la constata de	Dilute 150°F	304 Stainless Steel	A A sub-At- A stat	7005	Monel, Nickel		10% - 70°F	Carp. 20, Hastelloy B
Calcium Hydroxide	10% - 212°F	304 Stainless Steel	IVIUFIATIC ACID	/U ⁻ F	Iantaium 204 Steinless Steel		10% - 212°F	Carp. 20, Hastelloy B
	20% - 212 F	304 Stainless Steel	Nap Natural Cas	70 F 70°F	304 Stainless Steel		50% - 70 F	Carp. 20, Hastelloy B
Carbolic Acid	3070 - 212 F All 313°E	317 Stainless Steel	Notul di GdS	70 F 70°F	304 Stainless Steel		00% - 212 F	Carp 20, Hastelloy B
Carbon Diovide	Dry	Steel (C1018) Monel	Nickel Chloride	70 T 70°F	304 Stainless Steel		90% - 212°F	Hastellov D
	Wet	Aluminum.Monel.Nickel	Nickel Sulphate	Hot and Cold	304 Stainless Steel	Tannic Acid	70'F	304 Stainless Steel
Carbon Tetrachloride	10% - 70°F	Monel	Nitric Acid	5% - 70°F	304 Stainless Steel	Tar		Steel (C1018). 304
Chlorex Caustic		316SS, 317SS		20% - 70°F	304 Stainless Steel			Monel, Nickel
Chlorine Gas	Dry 70°F	317 Stainless Steel		50% - 70°F	304 Stainless Steel	Tartaric Acid	70°F	304 Stainless Steel
	Moist 70°F	Hastelloy C		50% - 212°F	304 Stainless Steel		150°F	316 Stainless Steel
	Moist 212°F	Hastelloy C		65% - 212°F	316 Stainless Steel	Tin	Molten	Cast Iron
Chromic Acid	5% - 70°F	304 Stainless Steel		Concentrated - 70°F	304 Stainless Steel	Tolvene		Aluminum, Phosphor
	10% - 212°F	316 Stainless Steel		Concentrated - 212°F	Tantalum			Bronze, Monel
011 1 1 1	50% - 212°F	316 Stainless Steel	Nitrobenzene	/0°F	304 Stainless Steel	Irichloroethylene		Steel (C1018)
Citric Acid	15% - 70°F	304 Stainless Steel	NITFOUS ACID	7005	304 Stainless Steel	Turpentine		304 Stainless Steel
	15% - ZIZ F Concentrated 212°F	310 Stainless Steel	Oleum	70 F 70°F	310 Stainless Steel	Varnisn Vagatabla Oila		304 Stainless Steel
Cool Tor	Lot	204 Staiplace Steel	Ovalic Acid	70 F F% Hot and Cold	204 Stainless Steel	vegetable olis		Monol
Coke Oven Gas	not	Aluminum		10% - 212°F	Monel	Vinegar		304 Stainless Steel
Copper Nitrate		304, 316	Oxvaen	70°F	Steel (C1018)	Water	Fresh	Copper, Steel (C1018)
Copper Sulphate		304, 316	0.190	Liquid	304 Stainless Steel			Monel
Core Oils		316 Stainless Steel	Palmitic Acid	1° '	316 Stainless Steel		Salt	Aluminum
Cottonseed Oil		Steel (C1018),	Petroleum Ether			Whiskey, Wine		304, Nickel
		Monel, Nickel	Phenol		304 Stainless Steel	Xylene		Copper
Creosols		304 Stainless Steel	Pentane		304 Stainless Steel	Zinc	Molten	Cast Iron
Creosote Crude		Steel (C 1018),	Phosphoric Acid	1% - 70°F	304 Stainless Steel	Zinc Chloride		Monel
0		Monel, Nickel		5% - 70°F	304 Stainless Steel	Zinc Sulphate	5% - 70°F	304 Stainless Steel
Cyanogen Gas		304 Stainless Steel		10% - 70°F	316 Stainless Steel		Saturated - /0°F	304 Stainless Steel
DOWINEITI Encom Salt	Hot and Cold	SIEEL (CIVID)		10% - 212°F 30% 70°F	Hastellov B		20% - 212 F	SU4 Stairness Steel
Ether	70°F	304 Stainless Steel		3070 - 70 r	nastelloy D			

omega.com®

Your One-Stop Source for Process Measurement and Control!

One Omega Drive | Stamford, CT 06907 | 1-888-TC-OMEGA (1-888-826-6342) | info@omega.com

www.omega.com

UNITED STATES www.omega.com 1-800-TC-OMEGA Stamford, CT.

CANADA www.omega.ca Laval(Quebec) 1-800-TC-OMEGA

GERMANY www.omega.de

Deckenpfronn, Germany 0800-8266342 UNITED KINGDOM www.omega.co.uk Manchester, England 0800-488-488

FRANCE www.omega.fr Guyancourt, France 088-466-342

CZECH REPUBLIC www.omegaeng.cz Karviná, Czech Republic 596-311-899

> BENELUX www.omega.nl Amstelveen, NL 0800-099-33-44

More than 100,000 Products Available!

Temperature

Calibrators, Connectors, General Test and Measurement Instruments, Glass Bulb Thermometers, Handheld Instruments for Temperature Measurement, Ice Point References, Indicating Labels, Crayons, Cements and Lacquers, Infrared Temperature Measurement Instruments, Recorders Relative Humidity Measurement Instruments, RTD Probes, Elements and Assemblies, Temperature & Process Meters, Timers and Counters, Temperature and Process Controllers and Power Switching Devices, Thermistor Elements, Probes and Assemblies, Thermocouples Thermowells and Head and Well Assemblies, Transmitters, Wire

Flow and Level

Air Velocity Indicators, Doppler Flowmeters, Level Measurement, Magnetic Flowmeters, Mass Flowmeters, Pitot Tubes, Pumps, Rotameters, Turbine and Paddle Wheel Flowmeters, Ultrasonic Flowmeters, Valves, Variable Area Flowmeters, Vortex Shedding Flowmeters

pH and Conductivity

Conductivity Instrumentation, Dissolved Oxygen Instrumentation, Environmental Instrumentation, pH Electrodes and Instruments, Water and Soil Analysis Instrumentation

Data Acquisition

Auto-Dialers and Alarm Monitoring Systems, Communication Products and Converters, Data Acquisition and Analysis Software, Data Loggers Plug-in Cards, Signal Conditioners, USB, RS232, RS485 and Parallel Port Data Acquisition Systems, Wireless Transmitters and Receivers

• Pressure, Strain and Force

Displacement Transducers, Dynamic Measurement Force Sensors, Instrumentation for Pressure and Strain Measurements, Load Cells, Pressure Gauges, Pressure Reference Section, Pressure Switches, Pressure Transducers, Proximity Transducers, Regulators, Strain Gages, Torque Transducers, Valves

Heaters

Band Heaters, Cartridge Heaters, Circulation Heaters, Comfort Heaters, Controllers, Meters and Switching Devices, Flexible Heaters, General Test and Measurement Instruments, Heater Hook-up Wire, Heating Cable Systems, Immersion Heaters, Process Air and Duct, Heaters, Radiant Heaters, Strip Heaters, Tubular Heaters

● click here to go to the omega.com home page ●